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Langmuir probes have been in extensive use for a number of
years in a variety of plasma studies. Of particular interest to the
authors have been vehicle-ionospheric interactions. Interpretation
of results, in most practical cases, has involved use of the Mott~
Smith Langmuir (MSL) equations® which were derived some time ago.
The MSL derivation avoided the electrostatic problem by assuming a
uniform shielding distance (''Space Sheath') of arbitrary dimension
and then solving the geometric problem. Use of these equations has
usually involved estimating sheath dimensions in some indirect manner
and then substituting this into the MSL equations to obtain ion and
electron concentrations, temperatures, etc. This approach has ob-
vious limitations, since the properties of the sheath are not fixed
but are highly variable, i.e. at zero probe potential the sheath
must vanish.

Walker? has treated, with some sophistication, the case of a
spherical body in both monocenergetic and Maxwellian plasmas. The
conservation of energy and angular momentum relations are used to
obtain an equation for the ion and electron densities in terms of
the local electric field. These equations used in conjunction with
the Poisson equation are solved numerically. In addition to the
electric field and the particie density distrisutions, Walker obtains
the voltage~-current probe characteristic curves. The calculations
are, however, lengthy so that results must be displayed graphically
or expressed by an approximate analytic expression. It is appealing
to attempt to extract from these numerically calculatéd curves a
relationship for the sheath which can be applied to the conventional

MSL equations.



The MSL equation for a spherical body, in a Maxwellian plasma,
and with an attractive potential on the probe, may be written as
(Ref. 1, pg. T4O):
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T = ion temp (9K)
m = jon mass

k = Boltzmann constant
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electronic charge
no = ambient charge density
i = current to the probe

h = Debye length = kT
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s = sheath thickness in
Debye lengths
Expanding the exponential term and then allowing the sheath to become

very large yields a limit of B for very large sheaths given by
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Langmuir probe behavior is conventionally divided into two
regimes, characterized by the relative dimensions of the radius and

sheath. |If the sheath is very large compared to the radius, i.e. in
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the region where Eq. (2) is applicable, the system is said to be orbit
limited and the MSL equation is independent of s. Thus, if p << s the
results obtained are independent of any other assumptions concerning
the sheath, and the given equations are accurate in their present
form. At the other extreme the sheath is of the order of the radius
or smaller, in which case, the probe is said to be operating sheath
limited. Unfortunately, this is the situation which exists in most
physical experiments.

Figure 1 is a plot of Walker's voltage-current characteristic
curves and as may be seen, they are quite systematic. By taking
ratios between curves at different values of ¥ and applying a fixed
correction term, one can obtain a function rebresenting all points
with p > 1, to an excellent approximation (see Fig. (2)). The
slope of this line is in the vicinity of 0.75, suggesting an exponent
of ¥ near that value. However, we have an alternative means of
estimating this exponent.

The fact that the sheath must vanish at zero potential, places
a restriction on the functional relation between s and ¥. We can
apply one other criterion. We expect that s would mono;onically in-
crease with ¥ and that at sufficiently high potentials the sheath
dimensions will become large compared to the radius and orbit limited

behavior will hold forth, therefore,

By =+ @V (3)

as s becomes very large X approaches the value

X = (§)2 §>> I (k)

I %._,. o as § =-» o that is if:




In s
In ¥ < 0.5 (5)

Then Eq. (1) reduces to

B=X ¢ = o (6)

Substituting Eq. (4) into (6) and equating to (3) we obtain

s? ay (7
It will be noted that (6) is not satisfied under these conditions
but for this particular solution the results are unaffected. We

need merely replace (5) with

B = AX where: A = f(p) (8)
In order to obtain the p dependence we make use of the Walker
results. After some fitting, the following empirical relation was

obtained.

s = o.83wé pé (9
Fig. (3) is a plot using this relation. Figure (4) is an error plot
showing the deviation using the MSL equation with (9) vs. Walker's

calculations.

While the general agreement is rather good, considering our
present state, it is apparent that a systematic error with ¥ exists
and we can, obviously, do better. The following function was found

to give a somewhat better fit to the available data.

s = 0.67\|ré p‘gr + 0.3p e'°‘°1/‘f' (10)
The error plot for this function is available in Fig. (5).

These general resul ts may also be obtained by aﬁ approximation
technique which consists of a calculation of the charge on a body. We

then equate this to the charge enclosed by its associated sheath of



thickness s. This relation may then be solved for s.

In the region where the MSL equation depends significantly
on the sheath thickness, s, the charge density in the sheath® is
approximately inversely proportional to the local velocity of ions

and electrons®*

n=ng u/v where: u = velocity outside sheath
v = local velocity (1)

By conservation of energy considerations,

% mvZ = %-mu2 +e |V (12)

and substitute Eq. (12) into Eq. (11) we obtain for the density

withing the sheath

n-noJH%v (13)

where ¥ = e |V|/kT and where we express mu2/2 in terms of the thermal
energy of the ambient plasma % muZ = % kT.
Let us now calculate the charge on the body in terms of ¥.

Using for the capacitance the expression for two concentric spheres,
C; = hp (p + s)/s (1)
The charge on the body will be
Qs = CSV = kTh ts o(p + s)/es (15)
where e is the charge on the ion. The total charge in the shea£h
QS' is,

o = e vy 3T en o+ 9% - no (1 + 50 E (10

*Equation (11) is an approximation which does not hold for small

[§]
values of p. A detailed consideration of this is given by E. J. Opik.>




Equating QS and QS' we obtain
4 3 2 2 2 3
sT+ 3570 + 35" =3 (p+s) ¥, (1 +3 ) ()

If we assume the sheath to be thick compared with the radius

of the body, s >> p, then Eq. (17) becomes

=300, (1 + 2y )2 (18)

For large values of ¥ Eq. (18) gives for s,

s= 68 p’l‘wf (19)

If p >> s, Eq. (17) becomes

s2 =y (1 + -§- ws)é (20)
and for large values of ws Eq. (20) becomes

I (21)

Except for the coefficients, Eqs. (9) and (19) are the same.
These equations show that the sheath may be quite large compared with
estimates of the sheath thickness using the Debye length as the scal-
ing length.

Since the above analysis gave us the correct functional
relationships, it is of some interest to extend the analysis to

cylindrical geometry where the more rigorous calculations are not

available. The charge on a unit length of a cylinder is:

KT ¥
Qc 2e In (1 + s/p)

(22)

The charge in the sheath is

Q = 2engh® (s® + 2ps) (1 + % ws)-% (23)



Equating the two we obtain,
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(s2 + 20s) In(1 +§) = my (2L)

S

If p>> s Eq. (24) becomes

3
v +2v) (25)

and for large values of WS,

s = (

N

s = 1.66 ‘Vs% (26)

Solving Eq. (24) for s where s >> p, we obtain

s= [y, I + 2y, /n(d) 2 (27)

For ltarge values of *s this reduces to

57 % %
s = 8051 "y, (28)

Equations (26) and (28) are quite similar since the dependence of

s on (In s/p)é is small.

&W‘L)\”
Conclusions 2 05y/

An analytical relation for the sheath about a spherical
Langmuir probe has been empirically derived from calculated data
thch reproduces this data within a mean error of better than 10
per cent. A semi-quantitative analysis verifies the functional
dependence of this relation and a similar analysis develops the
corresponding relationship for cylindrical geometry. In the
absence of sophisticated calculations in the cylindrical case a
detailed evaluation of coefficients is not possible. The relations
herein derived, even in their present relatively crude form, should

considerably aid in analysis of experimental Langmuir probe results;
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in particular, that involving spherical geometry. Ahﬁiz‘/v
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